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Projecting Climate-Related Disease Burden



1. Background
This document is a follow up to the “Projecting Climate-Related Disease Burden” 
technical report that was developed by the Climate and Health Program at the Centers 
for Disease Control and Prevention (CDC).1 Using case studies (completed and in 
development) from Climate Ready States and Cities Initiative (CRSCI) grantees 
utilizing the Building Resilience Against Climate Effects (BRACE) framework, these 
guidance documents are examples of specific methodology health departments can 
utilize to project climate-related disease burden. 

The example in this document provides one approach to estimate the excess current 
and future public health burden related to respiratory hospitalizations attributable to 
extreme heat in summer in New York State (NYS). A data set with daily observations 
for NYS from 1991–2004 is used as the baseline; disease burden is projected for the 
years 2046–2065 (midcentury) and 2080–2099 (end of century). These dates were 
chosen based on available climate projections and a time frame in which changes in 
disease burden would be evident (see sections 4.1 and 4.2). The methodology in this 
example is similar to that in a paper published in Environmental Health Perspectives,2 
but uses updated climate projections. The document is organized as follows:  
Section 2 describes the required data sets and their organization and linkage for the 
analysis; Section 3 describes the derivation of the exposure-outcome function (i.e., the 
estimation of the change in the number of adverse health effects in a given population 
for a given change in concentration for a given exposure); and Section 4 presents 
the approach for projecting the disease burden. Note that all data used here is for 
demonstration purposes only and not the actual data.  



2.  Assembling the data elements and 
estimating the baseline disease burden

To determine the future impact of climate change on respiratory diseases, we must 
first estimate the baseline respiratory disease burden (Section 2) and develop the 
exposure-outcome function between respiratory diseases and temperature (Section 
3). This activity requires two primary data elements: 1) health endpoint data, such as 
respiratory hospitalizations and 2) meteorological data as our exposure measurement. 
In this section, we describe how to extract and organize health and exposure data, 
conduct the data linkage, and estimate the baseline respiratory disease burden.   

2.1. Extraction and organization of the health data
The health data set used is the New York State Department of Health’s Statewide 
Planning and Research Cooperative System (NYSDOH SPARCS), a hospital discharge 
data set which includes principal diagnosis, hospital admission date, sources of 
payment, date of birth, sex, race, ethnicity, total charges, length of stay, and patient 
residential street address. We first extracted daily summer respiratory hospitalization 
records at baseline (June-August, 1991–2004) according to the International 
Classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM) (respiratory 
diseases: 491–493, 496, and 490 and 466 for child age < 5 years) and geocoded patient 
residential address to the street level. For geocoding, ArcGIS (ESRI) online geocoding 
services or other standard geocoding packages can be used. Next, we aggregated 
individual admissions to daily hospitalization counts spatially for each of the 14 NYS 
weather regions described by Chinery and Walker (2009).3 These 14 NYS weather 
regions were thus the spatial unit of analysis in this example. We also summed 
daily hospitalizations for selected socio-demographic characteristics (e.g., sex, race, 
ethnicity) for the purpose of stratified analyses. 

As an example, five randomly selected observations from the initial health data  
set (named RESP ) are displayed in table 1 below with selected variables and  
geocoded results.

 ■ DATE: hospital admission date

 ■ REGION: NYS weather region

 ■ ICD9: ICD-9-CM codes

 ■ ETHN: patient’s ethnicity

 ■ LENSTAY: days hospitalized  

 ■ RACE: patient’s race

 ■ SEX: patient’s gender

 ■ TCHARG: total charges
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OBS DATE REGION ICD9 DOB ETHN LENSTAY RACE SEX TCHARG
1 06/01/91 1 496 1930/01/01 2 7 01 M 7907

2 07/13/91 1 496 1956/12/15 2 5 01 M 3536

3 08/20/91 1 496 1942/01/20 2 7 01 M 7359

4 07/15/91 2 493 1965/02/05 2 5 01 M 2708

5 08/15/91 1 493 1940/01/02 1 52 88 M 51740

Table 1: Example of Initial Health Data Set

Next, to obtain the daily counts of respiratory hospitalizations for each region, 
we sorted this health data set (RESP) by DATE and REGION and summed the 
observations for each date and each region, creating the data set named DAILY_RESP. 
SAS code for creating this health data set is in Appendix SAS code 1. As an example, 
Table 2 below displays daily counts of respiratory hospitalizations for five selected 
days. Note that the individual–level information (e.g., gender, race, ethnicity) was 
lost (Table 1 vs. Table 2) when we aggregated individual observations into the daily 
counts by DATE and REGION. The DAILY_RESP data set is composed of complete 
counts (DAILY_TOTAL) for each day in June-August, 1991–2004. This data set has the 
required format for conducting time series analyses. SUM_TCHARG are the daily sum 
of the total charges and SUM_LENSTAY is days hospitalized on a single date for each 
region. These two variables are used as economic costs to translate estimated excess 
respiratory admissions due to climate change into economic burden in Section 4. For 
example, for Obs 1 there were a total of 80 respiratory hospitalizations on June 1, 1991 
in region 1 with total charges of $370,078 and 336 days of hospitalization for the 80 
individuals.  
To perform stratified analysis by an additional variable (e.g., patient’s sex) or 
variables, the data set must be aggregated by the additional variable(s). Table 3 is an 
example of daily counts of respiratory hospitalizations sorted and summed by DATE, 
REGION, and SEX. 

OBS DATE REGION DAILY_TOTAL SUM_TCHARG SUM_LENSTAY
1 06/01/91 1 80 370078 336

2 06/02/91 1 15 90967 94

3 06/03/91 1 2 4621 5

4 06/04/91 1 17 97679 121

5 06/05/91 1 13 79397 82

Table 2: Example of Sorted and Summed Health Data Set
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OBS DATE REGION SEX DAILY_TOTAL SUM_TCHARG SUM_LENSTAY
1 06/01/91 1 M 20 150024 136

2 06/01/91 1 F 60 220054 200

3 06/02/91 1 M 7 50425 44

4 06/02/91 1 F 8 40542 50

5 06/03/91 1 M 2 4621 5

6 06/03/91 1 F 0 0 0

7 06/04/91 1 M 10 60139 68

8 06/04/91 1 F 7 37540 53

9 06/05/91 1 M 8 50855 46

10 06/05/91 1 F 5 28542 36

Table 3: Example of Sorted and Summed Health Data Set for An Additional Variable 
(Patient’s Sex)

2.2. Estimation of the baseline disease burden
The next step is to estimate the baseline disease burden from the previously 
established health data set. There are several possible estimates for the baseline 
disease burden. In our example, we estimate the baseline respiratory disease burden 
as the mean number of daily respiratory hospitalizations during June–August, 1991–
2004. In general, the choice of estimate is based on the study design and available 
data; for instance, disease prevalence is often one of the chosen metrics. For heat-
related mortality due to climate change, mortality rates for specific administrative 
units (like county, state) could be used to estimate the baseline burden. 

2.3. Extraction and organization of the climate/weather data
This subsection describes the climate/weather data sources and their extraction and 
organization. Meteorological data can come from either monitoring sites (including 
ground-based monitors or satellite data) or climate models. When analyses will be 
conducted on large geographic areas, but with smaller analytic geographic units, such 
as census tracts or other sub-county areas, modeled data may be more suitable since 
it can provide higher resolution. If a study targets metropolitan areas, which usually 
have more monitoring sites, the weather data from ground-based monitors may 
provide comprehensive coverage. However, the choice of monitored or modeled data 
still depends on resources and study design. 

As mentioned above, this study examined 14 NYS weather regions with relatively 
homogeneous weather and ozone exposures. We used the monitored meteorological 
data since these 14 NYS weather regions are well covered by weather stations. 
The meteorological data (temperature and dew point) was obtained from the Data 
Support Section of the Computational and Information System Laboratory at the 
National Center for Atmospheric Research (NCAR) (https://www2.cisl.ucar.edu/
cisl-computing). Researchers can submit an online data request based on the study 
geography and time period. The meteorological data includes hourly temperature, 
barometric pressure, and dew point. In addition, measures of air pollution may need 
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to be considered as confounders. High ozone concentration is related to elevated 
temperature, and ozone exposure has been associated with respiratory disease and 
reduction in lung function. Hourly ambient ozone levels were obtained from NYS 
Department of Environmental Conservation (DEC) ambient air monitors. Data on 
air pollutants can also be obtained from the US Environmental Protection Agency 
(EPA). We controlled for an 8-hr maximum average ozone concentration limited to 
10:00–18:00 as a confounder in our example; this period represents the most likely 
time for outdoor exposure. Both meteorological and ambient air monitoring sites were 
geocoded to street level. The daily average exposure was calculated for each region. If 
there were multiple monitoring sites in one region, we used the average value among 
the monitoring sites. 

We used daily mean apparent temperature (AT [°C] = -2.653 + 0.994*(daily mean 
temperature [°C]) + 0.0153*(dew point [°C])2) as our temperature indicator since AT 
is an index of human discomfort resulting from the combined effects of heat and 
humidity4, 5. The exposure data set (named CLIMATE) is similar in structure to the 
DAILY_RESP health data set, where each observation is a regional daily measurement 
of AT and ozone. The units of AT and ozone are in degrees Fahrenheit (°F) and parts 
per million (ppm), respectively. It is important to make note of the units of the data 
being used, for example °F vs °C. The exposure data are shown in Table 4 below for the 
same days shown in the previous table.

DATE REGION AT O3
06/01/91 1 81.335 0.038

06/02/91 1 74.997 0.055

06/03/91 1 76.569 0.068

06/04/91 1 64.557 0.033

06/05/91 1 57.426 0.021

Table 4: Example Data Set with Regional Daily Apparent Temperature and 8-hr 
Maximum Average Ozone Concentration.
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2.4. Merging the health and climate data sets
We used the common variables (DATE & REGION) in both data sets to link the health 
outcome data to the meteorological data. Note that both data sets (DAILY_RESP & 
CLIMATE) must be sorted by DATE and REGION before merging. The merged data set 
is named ALL; SAS code for the data linkage is in Appendix SAS code 2. The merged 
data for the five selected days are shown below. 

OBS DATE REGION DAILY_TOTAL SUM_TCHARG SUM_LENSTAY AT O3 
1 06/01/91 1 80 370078 336 81.335 0.038

2 06/02/91 1 15 90967 94 74.997 0.055

3 06/03/91 1 2 4621 5 76.569 0.068

4 06/04/91 1 17 97679 121 64.557 0.033

5 06/05/91 1 13 79397 82 57.426 0.021

Table 5: Example of Merged Data Set Containing Health and Meteorological Variables.

6



3.  Derivation of the exposure-outcome 
function 

Time series and case-crossover approaches are the most commonly used techniques 
for developing exposure-outcome functions to assess the change in an adverse health 
outcome associated with a given environmental exposure change. Exposure-outcome 
functions are also known as health impact functions or concentration-response 
functions. The health outcome in this example is the daily total count of respiratory 
hospitalizations. We applied time series analysis using a two-stage Bayesian model 
that includes a regional analysis and a statewide estimate adjusted for regional 
confounders. Because of the technical nature of the material, the process was broken 
down into steps; SAS and R code are provided in the Appendix. An alternative 
to using this method is to obtain exposure-outcome functions from the existing 
epidemiological literature.  

3.1. Stage 1: regional analysis 
In stage 1, we estimated the association between extreme heat and respiratory disease 
hospitalization for each of the 14 NYS weather regions using generalized additive 
models (GAMs) with Poisson distributional errors and a log link function for each 
of the 14 NYS regions, while controlling for possible confounders.6 Since a U-, V-, or 
J-shaped relationship between temperature and health endpoints is usually found, we 
used a linear-threshold model to quantify the effect of high temperature.7,8 That is, we 
assumed a log-linear increase in health risk above a temperature threshold (T0), which 
was determined by comparing the maximum likelihood estimates over all possible 
threshold values in the range of data and using the value with the lowest deviance.8,9 

We used a linear term, AT>T0, to approximate the right part of the curve (extreme heat 
effect). The model is:

log(DAILY_TOTAL) = β0 + β1(AT>T0) + s(AT≤T0, DF=12) + s(DATE, DF) + 
s(O3, DF=8) + β2 + … + β9 + ε

where T0 is the threshold value of AT, β0 is the intercept term, ε is the error term, 
β1 is the slope parameter for AT>T0 , and DF equals degrees of freedom. Smoothing 
splines, indicated by s(AT≤T0, DF=12), s(DATE, DF), and s(O3, DF=8), are used 
to model the non-linear effects of AT≤T0 , long-term trends and seasonal variation 
(DATE), and ozone (O3). DF for DATE was determined using an automatic procedure 
based on minimizing the sum of absolute values for the first 30 items of the partial 
autocorrelation function (PACF) of the model residuals. We also controlled for the 
effect of day of the week (Monday–Saturday represented by β2–β7), and Northeast 
blackout events on 08/14/06–08/15/06 (β8, β9). Detailed procedures are outlined in 
Box 1 below; the corresponding SAS code is presented in Appendix SAS codes 3-10. 
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1)  Create sub-data sets for each region and their corresponding categorical 
variables for the day of the week and Northeast blackout events.

2) Search for the optimal DF for DATE (SAS codes 3-4).

a.  Fit GAMs with a possible range of DF for the smoothing spline of DATE 
while adjusting for above-mentioned confounders. Note that we model 
the smoothing spline of the full range of AT here before we identify the 
AT threshold. 

b.  Calculate the partial autocorrelation function (PACF) of the model 
residuals resulting from GAMs in Step 2.a, up to 30 lags.

c.  Determine DATE’s DF based on minimizing the sum of absolute values 
for the first 30 items of the PACF.

3)  Calculate the marginal prediction of AT and the linear prediction values 
of daily summer respiratory admissions given the optimal DF for DATE 
derived from Step 2 (SAS code 5).

4) Search for the optimal AT threshold (T0 ) (SAS codes 6-9).

a.  Under each AT threshold, for those with AT>T0 , calculate the modified 
marginal prediction of AT (the linear effect of AT after threshold) for 
a possible range of a slope of AT>T0 , the linear prediction values of 
daily summer respiratory admissions, the deviances and log-likelihood 
estimates.  

b.  Select a slope and its corresponding 95% CI based on maximum log-
likelihood estimate.

c.  For those with AT≤T0, calculate deviances and log-likelihood estimates. 
Note that because of AT≤T0, it is not necessary to calculate the modified 
marginal prediction of AT and linear prediction values of daily summer 
respiratory admissions.

d.  Sum the total deviances and log-likelihood estimates from those with 
AT>T0  and AT≤T0.

e. Determine AT threshold with minimum deviance.

5) Estimate the AT effects on respiratory hospitalization (SAS code 10).

a.  Create new variables, HT for AT>T0 and LT for AT≤T0 , given an identified 
AT threshold (T0).

b. Fit GAMs with new variables given an optimal DATE’s DF.  

c.  Report the regional modeled estimates as the percent change in 
respiratory hospitalizations per 1°F AT increase above threshold.

Box 1: Procedure Used to Perform Regional Analysis of Association Between 
Extreme Heat and Respiratory Disease Hospitalization

8



3.2. Stage 2: statewide analysis
In stage 2, we pooled region-specific estimates to generate a statewide estimate using 
a Bayesian hierarchical model. We controlled for region-level covariates using yearly 
data estimated from the 1990 and 2000 U.S. Census, including population density, 
health-care access (minimum distance to clinics), race and ethnicity (percent of black 
and Hispanic residents), percent of residents with ≤ high school education, mean 
AT during June–August, percent living below the poverty level, and percent of the 
regional population that was elderly (age ≥ 75 years) and living alone. The pooling 
of information across regions improves statistical power and generalizability of 
results and controls for geographic heterogeneity in effects.10, 11 All stage analyses 
were conducted using the tlnise function in R.12 Detailed procedures follow; the 
corresponding R code is presented in Appendix R code 1. 

1)  Link regional modeled estimates and their corresponding standard errors 
from the Stage 1 analysis with region-level covariates. Note that region-level 
covariates are mean centered. The partial data (named STAGE2) for this 
example are as follows:

REGION ESTIMATE SE DIS_CLINIC PCT_ELDERLY POP_DEN … PCT_POVERTY
1 0.0989 0.0128 -2.49 -2.25 32308.71 8.92
2 0.0911 0.0229 -2.16 -0.46 14913.16 6.02
3 0.0953 0.0188 -1.77 -1.94 2499.28 -1.77
4 0.0355 0.0299 0.07 -0.16 -2753.32 -6.04
…
13 0.1014 0.0353 1.47 -2.24 -4706.85 -3.93
14 0.0059 0.0478 -0.45 0.71 -4799.81 -2.39

 ■ REGION: NYS weather region

 ■ SE: standard error of β1 from stage 1

 ■ PCT_ELDERLY: % elderly 

 ■ PCT_POVERTY: % poverty

 ■ DIS_CLINIC: minimum distance to clinics

 ■ ESTIMATE: (β1) from stage 1

 ■ POP_DEN: population density

2) Run tlnise function in R tlnise package.

3)  Calculate the pooled estimate as the percent change in respiratory 
hospitalizations per 1°F AT increase above threshold and its corresponding  
95% confidence interval (CI).

Box 2: Procedure Used to Generate a Statewide Estimate of Association Between 
Extreme Heat and Respiratory Disease Hospitalization
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4. Projection of the disease burden
The final step of the process is to use climate projection data to project future disease 
burden. A climate projection shows how climate might change several decades to 
centuries in the future if certain scenarios develop. We first describe the rationale 
for the choice of climate projections, the acquisition and organization for climate 
projection data sets, and how to incorporate population growth, and finally provide 
an approach to estimate future disease burden, including hospital admissions and 
monetary value. 

4.1. Rationale for the choice of climate projections
Analysis of the potential impacts of climate change on communities requires 
information about the changing climate. Global climate models (GCMs) generate 
climate projections based on estimates of future greenhouse gas emissions. An 
ensemble of multiple GCMs has generally been found to provide a better forecast 
than any individual model.6 The Intergovernmental Panel on Climate Change (IPCC) 
has defined a series of scenarios that represent a range of possible future trends in 
carbon emissions for the whole of the 21st century. Each scenario is based on a set of 
assumptions about socioeconomic growth, technology development, land-use change, 
and energy demand. The fourth assessment report of the IPCC (AR4 IPCC) followed 
the method described in the Special Report on Emission Scenarios (SRES).13 The 
method called for sequentially developing socioeconomic and emissions scenarios 
and then carrying out climate change projections based on those scenarios.13-15 
SRES scenarios have four storylines and a total of 40 scenarios. Recently, the fifth 
assessment report of the IPCC (AR5 IPCC) followed a slightly different approach 
for scenario development. Four representative concentration pathways (RCP8.5, 
RCP6, RCP4.5 and RCP2.6) were derived in a parallel process with emission and 
socioeconomic scenarios.14, 15 Furthermore, in a relatively new climate modeling 
development, there are downscaled climate models with smaller-scale outputs 
achieved by using statistical techniques or dynamic weather modeling. Each type of 
model has advantages and disadvantages. GCMs simulate how the earth’s climate 
might change, whereas downscaled climate models generate more locally relevant 
projections for communities and cities. Ideally, the choice of GCMs or downscaled 
outputs depends upon the analytic geographic unit, time periods, meteorological 
variables of interest, and resources. For example, if one is interested in estimating 
public health burden due to extreme weather events, such as heavy rains, droughts, 
and hurricanes, which occur at the local or regional level, downscaled climate models 
would be preferable since these models simulate these weather patterns on a finer 
resolution by incorporating region-specific environmental processes. 
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4.2.  Obtain and organize the climate projection data for the 
exposure of interest

The Data Distribution Centre of the IPCC and the Research Data Archive of NCAR 
provide freely available climate projections with a variety of meteorological variables, 
temporal coverage, and emission scenarios.16, 17 These climate projection data sets 
have been used in many well-documented studies/reports. For example, the AR4 and 
AR5 of the IPCC and the study by Lin et al. (2012).2, 13, 15  

In this example, we estimated future AT by using temperature and precipitation 
obtained from Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections.18 
The downscaled outputs of the CMIP5 (Coupled Model Intercomparison Project 
Phase 5) multi-model ensemble was structured with daily meteorological variables 
by longitude and latitude (grid size~12 km x 12 km).19 Similar to what was done in 
section 2.3 with daily climate/weather (“exposure”) data, we utilized the longitude 
and latitude in climate projections to estimate spatially averaged mean summer daily 
AT for each region during 2046–2065 and 2080–2099 under the selected climate 
scenarios. We chose RCP 4.5 and 8.5 since they represent the intermediate emissions 
and the highest emissions scenarios, respectively. Future AT data sets for 2046–2065 
and 2080–2099 (named AT65 and AT99, respectively) with five selected days are 
shown in Table 6 below, where the first row represents the AT values in Region 1 on 
6/1/46 under scenarios of RCP 4.5 and RCP 8.5. 

DATE REGION RCP4.5_AT RCP8.5_AT
06/01/46 1 81.335 85.375

06/02/46 1 74.997 82.937

06/03/46 1 76.569 80.869

06/04/46 1 64.557 69.587

06/05/46 1 57.426 62.436

06/01/80 1 85.335 87.445

06/02/80 1 76.955 84.955

06/03/80 1 79.578 83.877

06/04/80 1 66.537 70.555

06/05/80 1 59.226 64.411

Table 6: Example of Future Apparent Temperature (AT) under RCP4.5 and RCP8.5 in 
2046 and 2080.
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4.3.  Obtain projection information on the population of 
concern

This case study assumed that the population remains constant into 2100; however, 
researchers could easily incorporate population growth into the projections. For 
example, we could use the population for New York from the 2000 Census (18,976,457) 
as our baseline population (1991–2004).20 Martin et al. estimated the 2050 New York 
State population as 29,301,275.21 The population growth rate is 1.5. This growth rate 
can be applied to the estimated disease burden as shown in the next section. 

4.4. Derive estimates of the future burden
We estimated the excess admissions attributable to extreme heat at baseline 
(1991–2004) and project for 2046–2065 and 2080–2099 as: A = R × ΔT × M, where A 
represents the estimated number of daily admissions attributable to AT>T0  for each 
time period; R is the estimated percentage increase in admissions per 1°F increase 
in AT>T0  at baseline based on the exposure-outcome function in Section 3 [i.e., R = 
exp(β1) – 1]; M is the mean number of daily respiratory admissions during June–
August at baseline; and ΔT is the difference between the mean daily AT for each 
time period and T0  on days when AT>T0 . We used the thresholds identified from the 
baseline data (1991–2004) for each region to project future impacts.

We also estimated excess hospitalizations due to extreme heat using medical charges 
for treatment of illness and hospitalization days, which were estimated as: C = A × 
D, where C represents either daily temperature-attributable hospitalization charges 
or days hospitalized; A is as defined in the previous paragraph; and D is the average 
number of days hospitalized per hospitalization at baseline or the average charge per 
hospitalization adjusted for inflation for each time period and standardized to 2004 
U.S. dollars to ensure that charges are comparable across the different years in this 
case study.22 Because a dollar in the future is considered to be of less value than a 
current dollar, it is common practice in health cost estimation to discount for future 
costs incurred across different time periods to derive the current worth of all future 
amounts. We used an annual discount rate of 3% as recommended by the U.S. Panel 
on Cost-Effectiveness in Health and Medicine to estimate the 2004 dollar value of the 
future stream of costs.23, 24 The detailed procedures follow; the corresponding SAS code 
is in Appendix SAS codes 11–13. 
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1)  Calculate the mean number of daily respiratory hospitalizations, the 
average number of days hospitalized per respiratory admission, and the 
average cost per respiratory admission with inflation adjustment during 
June-August at baseline for each region.

2)  Compute the AT difference between the mean daily AT and threshold for 
days with AT>T0  and present it as a yearly average. 

3)  Link data sets resulting from Step 1) and Step 2) and risk estimates from  
Section 3.

4)  Compute excess admissions, days hospitalized, and charges per year and 
adjust future charges by a discount rate of 3%. 

5)  To incorporate the population growth, multiply the estimated disease 
burden by the population growth rate. 

Box 3: Procedure Used to Estimate Future Disease Burden and Future Health Costs
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Appendix
CODE DESCRIPTION SECTION 
SAS code 1 Create the daily summer hospitalization data set  Table 2

SAS code 2 Link and merge daily summer hospitalization  and climate data sets Table 4

SAS code 3 Calculate the sum of the absolute values of the PACF up to 30 lags 
for each DATE’s DF  

Section 3.1, Box 1

SAS code 4 Determine DATE’s DF based on the minimum of the sum of the 
absolute values of the PACF up to 30 lags

Section 3.1, Box 1

SAS code 5 Calculate the marginal prediction of AT and the linear prediction 
values of daily summer hospitalization

Section 3.1, Box 1

SAS code 6 Calculate log of factorial for the upcoming calculation of log-
likelihood estimates

Section 3.1, Box 1

SAS code 7 Calculate deviances and log-likelihood estimates Section 3.1, Box 1

SAS code 8 Repeat SAS code 7 with threshold (60°F–100°F) and slope (-5% to 
+5%)

Section 3.1, Box 1

SAS code 9 Select threshold with the minimum deviance within 95% interval Section 3.1, Box 1

SAS code 10 Run final models to estimate the effects of AT > threshold Section 3.1, Box 1

SAS code 11 Estimate the mean number of daily summer respiratory admissions, 
days hospitalized per admission and the average charge per 
admission adjusted for yearly inflation rate at baseline. 

Section 4.4, Box 3

SAS code 12 Calculate the yearly averaged difference between AT and threshold 
during the baseline, 2046-2065, and 2080-2099

Section 4.4, Box 3

SAS code 13 Project burden including excess hospital admission, charges, and 
length of stay 

Section 4.4, Box 3

R code 1 Conduct stage 2 analysis Section 3.2, Box 2
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SAS code 1
*CREATE DAILY SUMMER (FOR MONTHS OF JUNE, JULY AND AUGUST) RESPIRATORY ADMISSIONS FOR 
NYS DURING 1991-2004 (this is what produces Table 2);
proc sql;
create table DAILY_RESP as
select DATE, REGION, count(DATE) as DAILY_TOTAL, sum(TCHARG) as SUM_TCHARG, 
sum(LENSTAY) as SUM_LENSTAY 
from RESP
where month(DATE) between 6 and 8
group by DATE, REGION;
quit;

SAS code 2
*MERGE DATA SETS OF DAILY_RESP AND CLIMATE (this is what produces Table 4);
proc sort data=DAILY_RESP; by DATE REGION; run;
proc sort data=CLIMATE; by DATE REGION; run;
data ALL;
merge DAILY_RESP CLIMATE(in=r);
by DATE REGION;
if r;
run;

SAS code 3
%macro pacf;

%do ID=1 %to 14;
*CREATE SUB-DATA SETS FOR EACH REGION AND THEIR CORRESPONDING CATEGORICAL 
VARIABLES;
data ALL_REG;
set ALL;
where REGION=&ID;
DOW=weekday(DATE);
if DATE=’14Aug2003’d then B8=1; else B8=0;
if DATE=’15Aug2003’d then B9=1; else B9=0;
run;

%do DATE_DF=10 %to 120 %by 2; *A POSSIBLE RANGE OF DATE’S DF;
proc datasets library=work nolist; delete EST_&ID DF_PACF_&ID;
quit;
*FIT GAMS FOR EACH POSSIBLE DATE’S DF;
proc gam data=ALL_REG;
class DOW;
 model DAILY_TOTAL=param(DOW B8 B9) spline(DATE, df=&DATE_DF)
spline(AT, df=12) spline(O3, df=8) / link=log dist=poisson notest;
output out=EST_&ID residual;
run;
*CALCULATE THE PACF;
proc sort data=EST_&ID; by DATE; run;
proc arima data=EST_&ID;
identify var=R_DAILY_TOTAL outcov=PCORR nlag=30 noprint;
run;
quit;
*SUM THE ABSOLUTE VALUES OF THE PACF UP TO 30 LAGS;
proc sql; 
create table DF_PACF_&ID as
select &DATE_DF as DATE_DF, sum(abs(PARTCORR)) as PACF
from PCORR
where 1 le lag le 30;
quit;
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proc append base=DF_&ID. data=DF_PACF_&ID.; run;
%end;
dm log ‘clear’;
dm output ‘clear’;

%end;
%mend;

SAS code 4
*DETERMINE DATE’S DF BASED ON THE MINIMUM OF THE SUM OF ABSOLUTE VALUES OF THE PACF 
WITH 30 LAGS;
%macro define_min;
%do ID=1 %to 14;
proc sql;
create table DATA&ID as 
select &ID as REGION, DATE_DF, PACF
from DF_&ID
where PACF=(SELECT min(PACF) from DF_&ID);
quit;
proc append base=MIN_PACF data=DATA&ID; run;
%end;
%mend;
%define_min;

SAS code 5
*CALCULATE THE MARGINAL PREDICTION OF AT AND THE LINEAR PREDICTION VALUES OF DAILY 
SUMMER RESPIRATORY ADMISSIONS;
%macro AT_effect;
%do ID=1 %to 14;

data _null_;
set MIN_PACF;
where REGION=&ID;
call symput(‘DATE_DF’,DATE_DF);

run;

data ALL_REG;
set ALL;
where REGION=&ID;
DOW=weekday(DATE);
if DATE=’14Aug2003’d then B8=1; else B8=0;
if DATE=’15Aug2003’d then B9=1; else B9=0;
run;

ods output parameterEstimates=LINEAR;
proc gam data=ALL_REG;
class DOW;
model DAILY_TOTAL=param(DOW B8 B9) spline(DATE, df=&DATE_DF) 
spline(AT, df=12) spline(O3, df=8) / link=log dist=poisson notest;
output out=OUT P LINP;
run;

data _null_;
set LINEAR;
where parameter=”Linear(at)”;
call symput(‘Linear’,ESTIMATE);
run;

data P_&ID;
set OUT;
*THE MARGINAL PREDICTION OF AT=LINEAR + SPLINE;
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EFFECT=&linear.*AT + P_AT; 
run;

%end;
%mend;
%AT_effect;

SAS code 6
*CALCULATE LOG OF FACTORIAL FOR THE BELOW CAUCULATION OF LOG-LIKELIHOOD ESTIMATES;
%macro fact;
data test;
do i=1 to 240;

total+log(i);
FACT=’FACT’||compress(put(i,3.));
output;

end;
run;
data _null_; set test; call symput(FACT,TOTAL); run;
%mend;
%fact;

SAS code 7
%macro gam_dev_cutp(EST, T_MIN, T_MAX, SL_MIN, SL_MAX, SL_INCR, SEG);
proc datasets library=work nolist; delete &EST._DEVIANCE_DIRECT; run; quit;

%do THRESHOLD =&T_MIN %to &T_MAX; *A POSSIBLE RANGE OF THRESHOLD;
*SELECT THE MARGINAL PREDICTION OF AT~THRESHOLD AS THE LINEAR-ADJUSTED 
NONPARAMETRIC PREDICTION;
proc sql;
create table CLOSEAT as 
select EFFECT as CLOSEAT 
from &EST
where AT=(select max(AT) from &EST where AT<&THRESHOLD);
quit; 

data _null_; set CLOSEAT; call symput(‘CLOSEAT’, CLOSEAT); run;

proc datasets library=work nolist; delete DEV2; run; quit;

%do SL=&SL_MIN %to &SL_MAX %by &SL_INCR; *A POSSIBLE RANGE OF SLOPE;
%let SLOPE=%sysevalf(&SL/&SEG);
%put THRESHOLD=&THRESHOLD SLOPE=&SLOPE;

*FOR THOSE WITH AT > THRESHOLD, CALCULATE THE MODIFIED MARGINAL PREDICTION 
OF AT AND THE LINEAR PREDICTION VALUES OF DAILY SUMMER RESPIRATORY 
ADMISSIONS;
data test2;
set &EST;
where AT > &THRESHOLD;
EFFECT_AT=&CLOSEAT + &SLOPE.*(AT-&THRESHOLD);
P_DAILY_TOTAL = P_DAILY_TOTAL - EFFECT + EFFECT_AT;
run;
*FOR THOSE WITH AT > THRESHOLD, CALCULATE DEVIANCES AND LOG-LIKELIHOOD 
ESTIMATES;
data test2;
set test2;
S2=deviance(‘poisson’, DAILY_TOTAL, exp(LINP_DAILY_TOTAL));
if DAILY_TOTAL le 0 then L2=0;
else do;

call symput(‘FACTN’, ‘FACT’||compress(put(DAILY_TOTAL, 3.)));
L2=DAILY_TOTAL*LINP_DAILY_TOTAL-exp(LINP_DAILY_TOTAL)-
symget(symget(‘FACTN’));
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end;
run;
*SUM DEVIANCES AND LOG-LIKELIHOOD ESTIMATES AMONG OBSERVATIONS WITH AT > 
THRESHOLD;
proc means data=TEST2 noprint;
var S2 L2;
output out=DEVIANCE2(drop=_type_ _freq_) sum=;
run;

data DEVIANCE2; set DEVIANCE2; SLOPE=&SLOPE; run;

proc append base=DEV2 data=DEVIANCE2; run;

dm “out;clear;log;clear;”;
%end;

*UNDER EACH THRESHOLD, SELECT SLOPE WITH THE MAXIMUM LOG-LIKELIHOOD ESTIMATE;
proc sql;
create table DEV2_THRESHOLD as 
select &THRESHOLD as THRESHOLD, *
from dev2
where L2= (select max(L2) from DEV2);
quit;
*THE 95% CI FOR SLOP;
proc sql;
create table CI as 
select SLOPE 
from DEV2
where L2+1.92 > (select max(L2) from DEV2);
quit;
proc means data=CI noprint;
var SLOPE;
output out=SLOPE_CI(drop=_type_ _freq_) min=L_SLOPE max=U_SLOPE;
run;
data DEV2_THRESHOLD;
merge DEV2_THRESHOLD SLOPE_CI;
if L_SLOPE gt SLOPE then L_SLOPE=SLOPE;
if U_SLOPE lt SLOPE then U_SLOPE=SLOPE;
run;

*FOR THOSE WITH AT <= THRESHOLD, CALCULATE DEVIANCE AND LOG-LIKELIHOOD 
ESTIMATES;
data test1;
set &EST;
where AT le &THRESHOLD;
S1=deviance(‘poisson’, DAILY_TOTAL, exp(LINP_Daily_TOTAL));
if DAILY_TOTAL le 0 then L1=0;
else do;
call symput(‘FACTN’, ‘FACT’||compress(put(DAILY_TOTAL, 3.)));
L1=DAILY_TOTAL*LINP_DAILY_TOTAL-exp(LINP_DAILY_TOTAL)-symget(symget(‘FACTN’));
end;
run;
*SUM DEVIANCES AND LOG-LIKELIHOOD ESTIMATES AMONG OBSERVATIONS WITH AT <= 
THRESHOLD;
proc means data=TEST1 noprint;
var S1 L1;
output out=DEVIANCE1(drop=_type_ _freq_) sum=;
run;
*SUM DEVIANCE AND LOG-LIKELIHOOD ESTIMATES FOR OBSERVATIONS WITH AT > THRESHOLD 
AND AT <= THRESHOLD;
data DEV_THRESHOLD;
merge DEVIANCE1 DEV2_THRESHOLD;
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L_DEV=S1;
R_DEV=S2;
T_DEV=L_DEV+R_DEV;
L_LL=L1;
R_LL=L2;
T_LL=L1+L2;
drop L1 L2 S1 S2;
run;

proc append base=&EST._DEVIANCE_DIRECT data=DEV_THRESHOLD; run;

%end;
%mend;

SAS code 8
*REPEAT SAS code 7 FOR 14 NYS WEATHER REGIONS WITH THRESHOLD (60F-100F) AND SLOPE (-5% 
to +5%);
%macro search;
%do ID=1 %to 14;
%gam_dev_cutp(P_&ID.,60,120,-50,50,1,1000);
%end;
%mend;
%search;

SAS code 9
*SELECT THRESHOLD WITH THE MINIMUM DEVIANCE WITHIN 95% INTERVAL;
%macro threshold;
%do ID=1 %to 14;
proc sql;
create table THRESHOLD_&ID. as
select &ID. as REGION, min(THRESHOLD) as THRESHOLD
from P_&ID._DEVIANCE_DIRECT
where T_DEV le 3.84 + (select min(T_DEV) from P_&ID._DEVIANCE_DIRECT);
quit;

proc append base=THRESHOLD data=THRESHOLD_&ID.; run;
%end;
%mend;
%threshold;

SAS code 10
*ESTIMATE THE EFFECTS OF AT > THRESHOLD;
%macro estimate; 
proc datasets library=work; delete linear param; run;

%do ID=1 %to 14;
data _null_;
set THRESHOLD;
where REGION=&ID;
call symput(‘THRSHLD’,THRESHOLD);
run;

data _null_;
set min_pacf;
where REGION=&ID;
call symput(‘DATE_DF’,DATE_DF);
run;
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data ALL_REG;
set ALL;
where REGION=&ID;
DOW=weekday(DATE);
if DATE=’14Aug2003’d then B8=1; else B8=0;
if DATE=’15Aug2003’d then B9=1; else B9=0;
*DEFINE EXTREME AT;
HT=(AT-&THRSHLD)*(AT>&THRSHLD);
LT=AT*(AT<=&THRSHLD);
run;

ods output parameterEstimates=LINEAR;
proc gam data=ALL_REG;
class DOW;
model DAILY_TOTAL=param(DOW B8 B9 HT) spline(date, df=&DATE_DF) 
spline(LT, df=12) spline(O3, df=8) / link=log dist=poisson notest;
run;

data _null_;
set LINEAR;
if trim(Parameter)=”HT” then do;

call symput(‘HT’,ESTIMATE);
call symput(‘SE’,STDERR);
call symput(‘P_VALUE’,PROBT);

end;
run;

data PARAM;
REGION=&ID;
THRESHOLD=&THRSHLD;
HT=&HT;
EFFECT=exp(&HT)-1;
P_VALUE=&P_VALUE.;
L_CI=exp(&HT-&SE*1.96)-1;
H_CI=exp(&HT+&SE*1.96)-1;
run;

proc append base=REGION_EST data=PARAM; run;
%end;
%mend;
%estimate;

SAS code 11
*CALCULATE THE MEAN NUMBER OF DAILY SUMMER RESPIRATORY ADMISSIONS, 
DAYS HOSPITALIZED PER HOSPITALIZATION AND THE AVERAGE CHARGE PER HOSPITALIZATION 
ADJUSTED FOR INFLATION FOR EACH TIME PERIOD AT BASELINE;
proc sql;
create table M_B as
select REGION, mean(DAILY_TOTAL) as M, sum(SUM_LENSTAY)/sum(DAILY_TOTAL) as M_LEN, 
sum(case

when year(DATE)=1991 then SUM_TCHARG*1.39
when year(DATE)=1992 then SUM_TCHARG*1.35
when year(DATE)=1993 then SUM_TCHARG*1.31
when year(DATE)=1994 then SUM_TCHARG*1.27
when year(DATE)=1995 then SUM_TCHARG*1.24
when year(DATE)=1996 then SUM_TCHARG*1.20
when year(DATE)=1997 then SUM_TCHARG*1.18
when year(DATE)=1998 then SUM_TCHARG*1.16
when year(DATE)=1999 then SUM_TCHARG*1.13
when year(DATE)=2000 then SUM_TCHARG*1.10
when year(DATE)=2001 then SUM_TCHARG*1.07
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when year(DATE)=2002 then SUM_TCHARG*1.05
when year(DATE)=2003 then SUM_TCHARG*1.03
 else SUM_TCHARG
end)/sum(DAILY_TOTAL) as M_COST

from ALL 
group by REGION;
quit;

SAS code 12
*CALCULATE THE YEARLY AVERAGED DIFFERENCE BEWTEEN AT AND THRESHOLD DURING THE 
BASELINE, 2046-2065, AND 2080-2099;
%macro delta;
%do ID=1 %to 14;

data _null_;
set REGION_EST;
where REGION=&ID;
call symput(‘THRESHOLD’,THRESHOLD);
run;
data DELTA_BASELINE; 
set ALL(where=(REGION=&ID)); 
if AT > &THRESHOLD then DELTA=AT-&THRESHOLD;
else DELTA=0;
run;
data DELTA_65;
set AT65(where=(REGION=&ID)); 
if AT > &THRESHOLD then DELTA_45_65=AT-&THRESHOLD;
else DELTA_45_65=0;
if AT > &THRESHOLD then DELTA_85_65=AT-&THRESHOLD;
else DELTA_85_65=0;
run;
data DELTA_99;
set AT99(where=(REGION=&I)); 
if AT > &THRESHOLD then DELTA_45_99=AT-&THRESHOLD;
else DELTA_45_99=0;
if AT > &THRESHOLD then DELTA_85_99=AT-&THRESHOLD;
else DELTA_85_99=0;
run;
proc sql; 
create table D_B as 
select &ID as REGION, sum(DELTA)/14 as D_B
from DELTA_BASELINE
group by REGION;
quit;
proc sql;
create table D_65 as
select &ID as REGION, sum(DELTA_45_65)/20 as D_45_65, sum(DELTA_85_65)/20 as 
D_85_65
from DELTA_65
group by REGION;
quit;
proc sql;
create table D_99 as
select &ID as REGION, sum(DELTA_45_99)/20 as D_45_99, sum(DELTA_85_99)/20 as 
D_85_99
from DELTA_99
group by REGION;
quit;
data DELTA; merge D_B D_65 D_99; by REGION; run;
proc append base=DELTA_ALL data=DELTA; run;

%end;
%mend;
%delta;
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SAS code 13
*CALCULATE BURDEN;
data FINAL_PH; merge REGION_EST(keep=REGION EFFECT) M_B DELTA_ALL; by REGION; run;
data EST_BURDEN;
set FINAL_PH;
AD_B=EFFECT*D_B*M;
C_B=AD_B*M_COST;
L_B=AD_B*M_LEN;
AD_RCP45_65=EFFECT*D_45_65*M;
C_RCP45_65=AD_RCP45_65*M_COST*((1+0.03)**50);
L_RCP45_65=AD_RCP45_65*M_LEN;
AD_RCP85_65=EFFECT*D_85_65*M;
C_RCP85_65=AD_RCP45_85*M_COST*((1+0.03)**50);
L_RCP85_65=AD_RCP45_85*M_LEN;
AD_RCP45_99=EFFECT*D_45_99*M;
C_RCP45_99=AD_RCP45_99*M_COST*((1+0.03)**100);
L_RCP45_99=AD_RCP45_99*M_LEN;
AD_RCP85_99=EFFECT*D_85_99*M;
C_RCP85_99=AD_RCP45_99*M_COST*((1+0.03)**100);
L_RCP85_99=AD_RCP45_99*M_LEN;
run;

R code 1
library(tlnise)
# DEFINE ESTIMATOR, VARIANCE, REGIONAL COVARIATES 
y= STAGE2[,2]
v= STAGE2[,3]
w=as.matrix(cbind(rep(1,14), STAGE2[,-c(1:3)]))

# USING TLNISE PACKAGE TO CONDUCT STAGE 2 ANALYSIS
out=tlnise(y, v, w, prior=2, maxiter=200)

# STAGE 2 RESULT
pooled=(exp(out$gamma[1,1])-1)*100
CI_L=(exp(out$gamma[1,1]-1.96*out$gamma[1,2])-1)*100
CI_H=(exp(out$gamm a[1,1]+1.96*out$gamma[1,2])-1)*100

A Case Study on Methods for Projecting Respiratory Health Impacts 1
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